$\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0$ ના વિસ્તરણમાં ત્રીજું, ચોથું અને પાચમું પદોના સહગુણકોનો ગુણોતર $12: 8: 3 $ હોય તો આપેલ બહુપદીના વિસ્તરણમાં અચળ પદ મેળવો.
$5$
$3$
$4$
$6$
જો ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ ના વિસ્તરણમાં ${(r + 1)^{th}}$ ના પદમાં $a$ અને $b$ ની ઘાતાંક સમાન હોય , તો $r$ મેળવો.
જો $(1+x)^{p}(1-x)^{q}, p, q \leq 15$ ના વિસ્તરણમાં $x$ અને $x^{2}$ ના સહગુણકો અનુક્રમે $-3$ અને $-5$ હોય તો $x ^{3}$ નો સહગુણક $............$ થાય.
$(x+2 y)^{9}$ ના વિસ્તરણમાં $x^{6} y^{3}$ નો સહગુણક શોધો.
${\left( {x - \frac{1}{x}} \right)^{11}}$ ના વિસ્તરણમાં આવેલા બે મધ્યમપદો મેળવો.
${\left( {x - \frac{1}{x}} \right)^7}$ ના વિસ્તરણમાં ${x^{3}}$ નો સહગુણક મેળવો.